A General Theory of Almost Convex Functions
نویسندگان
چکیده
Let ∆m = {(t0, . . . , tm) ∈ Rm+1 : ti ≥ 0, ∑m i=0 ti = 1} be the standard m-dimensional simplex and let ∅ = S ⊂ ⋃∞ m=1 ∆m. Then a function h : C → R with domain a convex set in a real vector space is S-almost convex iff for all (t0, . . . , tm) ∈ S and x0, . . . , xm ∈ C the inequality h(t0x0 + · · ·+ tmxm) ≤ 1 + t0h(x0) + · · ·+ tmh(xm) holds. A detailed study of the properties of S-almost convex functions is made. If S contains at least one point that is not a vertex, then an extremal S-almost convex function ES : ∆n → R is constructed with the properties that it vanishes on the vertices of ∆n and if h : ∆n → R is any bounded S-almost convex function with h(ek) ≤ 0 on the vertices of ∆n, then h(x) ≤ ES(x) for all x ∈ ∆n. In the special case S = {(1/(m+1), . . . , 1/(m+1))}, the barycenter of ∆m, very explicit formulas are given for ES and κS(n) = supx∈∆n ES(x). These are of interest, as ES and κS(n) are extremal in various geometric and analytic inequalities and theorems.
منابع مشابه
Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملInitial coefficients of starlike functions with real coefficients
The sharp bounds for the third and fourth coefficients of Ma-Minda starlike functions having fixed second coefficient are determined. These results are proved by using certain constraint coefficient problem for functions with positive real part whose coefficients are real and the first coefficient is kept fixed. Analogous results are obtained for a general class of close-to-convex functions
متن کاملPartial second-order subdifferentials of -prox-regular functions
Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2 functions. The class of prox-regular functions covers all convex functions, lower C2 functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...
متن کامل